Upon exposure to irradiation, trans-cinnamic acid can dimerize, producing truxinic and truxillic acids, regioisomers distinguished by the relative arrangement of acid and phenyl groups on the formed cyclobutane ring. Solid-state dimerization, governed by Schmidt’s specified conditions, hinges on the initial molecular setup. This study endeavors to manipulate the reaction’s outcome in the solid state. To achieve this, the target molecule was paired with metals (Ag, Cu) to modify molecular orientation in the solid. Investigated derivatives included para-hydroxy-trans-cinnamic acid, ortho-methoxy-trans-cinnamic acid, ortho-ethoxy-trans-cinnamic acid, and ortho-chloro-trans-cinnamic acid. Despite easy synthesis of all complexes, only the complex between Ag and ortho-chloro-trans-cinnamic acid exhibits photoreactivity, mirroring the outcome of the metal-free derivative. Thus, while this approach has the potential to alter the photobehavior of cinnamic acid derivatives, obtaining the desired structure will require extensive screening to identify an appropriate metal complex.