Predicting trajectories and destinations is of considerable relevance in the context of urban mobility, as it can be useful for suggesting detours, avoiding congestion, and optimizing people's commutes. Therefore, this research performs a classification and analysis of trajectory and destination prediction models in articles published from 2017 to 2023. These models were mapped considering: authors; the existence of more than one geographic scenario; the type of forecast; the use of semantic and contextual data; and description of the algorithms. The result consists of discussions of representative works, based on classification, with grouping of techniques. Furthermore, there is a focus on works that used contextual and/or semantic data, from which another framework was developed, specifying the titles of the articles, and whether the methodology involved the use of points or areas of interest, and a reference to how they were generated. This focus expands the previous framework, specifying the differences of a portion of published studies.
Read full abstract