With the rapid growth of shipping volumes, ship navigation and path planning have attracted increased attention. To design navigation routes and avoid ship collisions, accurate ship trajectory prediction based on automatic identification system data is required. Therefore, this study developed an encoder–decoder learning model for ship trajectory prediction, to avoid ship collisions. The proposed model includes long short-term memory units and an attention mechanism. Long short-term memory can extract relationships between the historical trajectory of a ship and the current state of encountered ships. Simultaneously, the global attention mechanism in the proposed model can identify interactions between the output and input trajectory sequences, and a multi-head self-attention mechanism in the proposed model is used to learn the feature fusion representation between the input trajectory sequences. Six case studies of trajectory prediction for ship collision avoidance from the Yangtze River of China and the eastern coast of the U.S. were investigated and compared. The results showed that the average mean absolute errors of our model were much lower than those of the classical neural networks and other state-of-the-art models that included attention mechanisms.
Read full abstract