Haematological traits are essential diagnostic parameters in veterinary practice but knowledge on the genetic architecture controlling variability of erythroid traits is sparse, especially in swine. To identify QTL for erythroid traits in the pig, haematocrit (HCT), haemoglobin (HB), erythrocyte counts (RBC) and mean corpuscular haemoglobin content (MCHC) were measured in 139 F(2) pigs from a Meishan/Pietrain family, before and after challenge with the protozoan pathogen Sarcocystis miescheriana. The pigs passed through three stages representing acute disease, reconvalescence and chronic disease. Forty-three single QTL controlling erythroid traits were identified on 16 chromosomes. Twelve of the QTL were significant at the genome-wide level while 31 were significant at a chromosome-wide level. Because erythroid traits varied with health and disease status, QTL influencing the erythroid phenotypes showed specific health/disease patterns. Regions on SSC5, 7, 8, 12 and 13 contained QTL for baseline erythroid traits, while the other QTL regions affected distinct stages of the disease model. Single QTL explained 9-17% of the phenotypic variance in the F(2) animals. Related traits were partly under common genetic influence. Our analysis confirms that erythroid trait variation differs between Meishan and Pietrain breeds and that this variation is associated with multiple chromosomal regions.
Read full abstract