Sensory afferent information, such as auditory and somatosensory feedback while moving, plays a crucial role in both control and learning of motor performance across the lifespan. Music performance requires skillful integration of multimodal sensory information for the production of dexterous movements. However, it has not been understood what roles somatosensory afferent information plays in the acquisition and sophistication of specialized motor skills of musicians across different stages of development. In the present preliminary study, we addressed this issue by using a novel technique with a hand exoskeleton robot that can externally move the fingers of pianists. Short-term exposure to fast and complex finger movements generated by the exoskeleton (i.e., passive movements) increased the maximum rate of repetitive piano keystrokes by the pianists. This indicates that somatosensory inputs derived from the externally generated motions enhanced the quickness of the sequential finger movements in piano performance, even though the pianists did not voluntarily move the fingers. The enhancement of motor skill through passive somatosensory training using the exoskeleton was more pronounced in adolescent pianists than adult pianists. These preliminary results implicate a sensitive period of neuroplasticity of the somatosensory-motor system of trained pianists, which emphasizes the importance of somatosensory-motor training in professional music education during adolescence.
Read full abstract