The ablation processes of Cu film are investigated using temporal shaped femtosecond pulse trains. The depth is modulated by changing the number and interval of the sub-pulses. The underlying ultrafast dynamic processes are discussed based on plasma shielding and electron multiple heating mechanisms. When the sub-pulse interval is less than 0.4 ps electron multiple heating is the dominant mechanism, while the plasma shielding dominates the subsequent ablation processes when the sub-pulse interval is larger than 0.4 ps. The curve of depth obtained by three pulse trains shows more significant oscillation as the function of sub-pulse interval under the low-fluence. We propose that the oscillation of depth is due to the coherent phonon oscillation excited by the pulse train. The study provides a basis for giving insight into the ultrafast dynamics for improving micromachining and nano-fabrications using shaped femtosecond pulse trains.
Read full abstract