Tunnel lighting constitutes one of the major expenses incurred in transportation lighting, and hence substantial research has been conducted to improve the efficiency of lighting and thus to minimize operating costs. This paper investigates an intelligent method for adjusting tunnel lighting with dynamic control based on data mining of traffic flow distribution, traffic composition, and vehicle speed distribution. Field monitoring data of traffic flow in five real expressway tunnels, which are in HeDa expressway, Jilin Province, China, was used in the analysis. The K-MEANS clustering algorithm was used to group (or cluster) the distribution of daily traffic volume into six-time periods, in which the traffic volume includes two peak periods (8:01–11:23 and 14:31–19:01). A dynamic luminance regulation method is proposed that distinguishes operational strategies under different time periods. Furthermore, the impact of tunnel length and traffic flow on the effect of energy-saving and system sustainability of the proposed method was assessed. The results show that when using the proposed method, the energy-savings in tunnel lighting could be between about 50% and 60% for a daily traffic volume between 750 and 2500 vehicles. The results also show that the switching frequency of the lighting system is significantly reduced, which would significantly enhance the sustainability of the lighting system.
Read full abstract