We propose a high-performance algorithm while using a promoted and modified form of the You Only Look Once (YOLO) model, which is based on the TensorFlow framework, to enhance the real-time monitoring of traffic-flow problems by an intelligent transportation system. Real-time detection and traffic-flow statistics were realized by adjusting the network structure, optimizing the loss function, and introducing weight regularization. This model, which we call YOLO-UA, was initialized based on the weight of a YOLO model pre-trained while using the VOC2007 data set. The UA-CAR data set with complex weather conditions was used for training, and better model parameters were selected through tests and subsequent adjustments. The experimental results showed that, for different weather scenarios, the accuracy of the YOLO-UA was ~22% greater than that of the YOLO model before optimization, and the recall rate increased by about 21%. On both cloudy and sunny days, the accuracy, precision, and recall rate of the YOLO-UA model were more than 94% above the floating rate, which suggested that the precision and recall rate achieved a good balance. When used for video testing, the YOLO-UA model yielded traffic statistics with an accuracy of up to 100%; the time to count the vehicles in each frame was less than 30 ms and it was highly robust in response to changes in scenario and weather.
Read full abstract