Предметом досліджень статті є моделі для встановлення рівня релевантності зображень у просторі розподілів для дескрипторів ключових точок при розпізнаванні візуальних об’єктів у системах комп’ютерного зору. Метою є створення методу структурного розпізнавання зображень на підставі впровадження ланцюжкових моделей даних із використанням ймовірнісних розподілів множини дескрипторів. Завдання: розроблення математичних та програмних моделей для ефективного за швидкодією аналізу даних при визначенні релевантності структурних описів, вивчення властивостей, атрибутів застосування, значень параметрів цих моделей, оцінювання результативності за наслідками оброблення конкретних зображень. Застосовуваними методами є: детектор BRISK для формування дескрипторів ключових точок, апарат інтелектуального аналізу даних, методи побітового оброблення та побудови розподілів бітових даних, апарат метричного визначення релевантності, програмне моделювання. Отримані такі результати. Перехід від опису множин дескрипторів до ймовірнісних розподілів фрагментів і зіставлення образів у просторі розподілів забезпечують необхідну результативність розпізнавання. Оброблення та аналіз даних виконується у сотні разів швидше, ніж традиційний підрахунок голосів. Оброблення та аналіз сполучень бітів формує значимі властивості для сукупності елементів опису зі збереженням структури даних і їх уніфікації. Зі збільшенням числа бітів у фрагменті розподілу зростає відстань між зображеннями, що сприяє збільшенню ступеня їх розрізнення. Ланцюговим поданням та застосуванням розподілів створюється новий простір даних, що дає можливість суттєво покращити показники функціонування систем розпізнавання зображень. Висновки. Наукова новизна дослідження полягає в удосконаленні методу структурного розпізнавання зображень на основі впровадження узагальненої ланцюгової структури опису із використанням значень розподілу для фрагментів множини дескрипторів ключових точок, що змістовно відображають властивості зображень об’єктів і забезпечують результативне розпізнавання. Практична значущість – досягнення суттєвого рівня підвищення швидкодії обчислення релевантності, підтвердження результативності запропонованих модифікацій на прикладах зображень, отримання прикладних програмних моделей для дослідження та впровадження методів класифікації в системах комп’ютерного зору.