Traditional simulation methods that are based on some form of kriging are not sensitive to the presence of strings of connectivity of low or high values. They are particularly inappropriate in many earth sciences applications, where the geological structures to be simulated are curvilinear. In such cases, techniques allowing the reproduction of multiple-point statistics are required. The aim of this paper is to point out the advantages of integrating such multiple-statistics in a model in order to allow shape reproduction, as well as heterogeneity structures, of complex geological patterns to emerge. A comparison between a traditional variogram-based simulation algorithm, such as the sequential indicator simulation, and a multiple-point statistics algorithm (e.g., the single normal equation simulation) is presented. In particular, it is shown that the spatial distribution of limestone with meandering channels in Lecce, Italy is better reproduced by using the latter algorithm. The strengths of this study are, first, the use of a training image that is not a fluvial system and, more importantly, the quantitative comparison between the two algorithms. The paper focuses on different metrics that facilitate the comparison of the methods used for limestone spatial distribution simulation: both objective measures of similarity of facies realizations and high-order spatial cumulants based on different third- and fourth-order spatial templates are considered.