Background Anaesthetists may fail to recognize and manage certain rare intraoperative events. Simulation has been shown to be an effective educational adjunct to typical operating room-based education to train for these events. It is yet unclear, however, why simulation has any benefit. We hypothesize that learners who are allowed to manage a scenario independently and allowed to fail, thus causing simulated morbidity, will consequently perform better when re-exposed to a similar scenario. Methods Using a randomized, controlled, observer-blinded design, 24 first-year residents were exposed to an oxygen pipeline contamination scenario, either where patient harm occurred (independent group, n=12) or where a simulated attending anaesthetist intervened to prevent harm (supervised group, n=12). Residents were brought back 6 months later and exposed to a different scenario (pipeline contamination) with the same end point. Participants’ proper treatment, time to diagnosis, and non-technical skills (measured using the Anaesthetists’ Non-Technical Skills Checklist, ANTS) were measured. Results No participants provided proper treatment in the initial exposure. In the repeat encounter 6 months later, 67% in the independent group vs 17% in the supervised group resumed adequate oxygen delivery (P=0.013). The independent group also had better ANTS scores [median (interquartile range): 42.3 (31.5–53.1) vs 31.3 (21.6–41), P=0.015]. There was no difference in time to treatment if proper management was provided [602 (490–820) vs 610 (420–800) s, P=0.79]. Conclusions Allowing residents to practise independently in the simulation laboratory, and subsequently, allowing them to fail, can be an important part of simulation-based learning. This is not feasible in real clinical practice but appears to have improved resident performance in this study. The purposeful use of independent practice and its potentially negative outcomes thus sets simulation-based learning apart from traditional operating room learning.