Despite continuous advances in myocardial revascularization procedures and intracoronary devices, patients with ischemic heart disease (IHD) still experience worse prognosis and poor quality of life (QoL). Indeed, chronic stable angina (CSA) is a common disease with a large burden on healthcare costs. Traditionally, CSA is interpreted as episodes of reversible myocardial ischemia related to the presence of stable coronary artery plaque causing myocardial demand/supply mismatch when myocardial oxygen consumption increases. Accordingly, revascularization procedures are performed with the aim to remove the flow limiting stenosis, whereas traditional medical therapy (hemodynamic agents) aims at reducing myocardial oxygen demands. However, although effective, none of these treatment strategies or their combination is either able to confer symptomatic relief in all patients, nor to reduce mortality. Failure to significantly improve QoL and prognosis may be attributed at least in part to this "restrictive" understanding of IHD. Despite for many years myocardial metabolic derangement has been overlooked, recently it has gained increased attention with the development of new pharmacological agents (metabolic modulators) able to influence myocardial substrate selection and utilization thus improving cardiac efficiency. Shifting cardiac metabolism from free fatty acids (FA) towards glucose is a promising approach for the treatment of patients with stable angina, independently of the underling disease (macrovascular and/or microvascular disease). In this sense cardiac metabolic modulators open the way to a "revolutionary" understanding of ischemic heart disease and its common clinical manifestations, where myocardial ischemia is no longer considered as the mere oxygen and metabolites demand/supply unbalance, but as an energetic disorder. Keeping in mind such an alternative approach to the disease, development of new pharmacological agents directed toward multiple metabolic targets is mandatory.