In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color. This enables the fluorescence/colorimetric detection of TC. Importantly, an automatic electromagnet-integrated microfluidic chip was designed to control the shuttling of magnetic materials in each function slot according to a programmed sequence. Under the optimal conditions, the detection limits of TC for fluorescence and colorimetric methods were 11 and 43 μmol/L, respectively. The detection results for tilapia (Oreochromis nilotica) were comparable to those of traditional high-performance liquid chromatography. This platform offers excellent performance for TC determination and potential for portable, intelligent detection of trace pollutants in food and the environment.
Read full abstract