The lack of facial features caused by wearing masks degrades the performance of facial recognition systems. Traditional occluded face recognition methods cannot integrate the computational resources of the edge layer and the device layer. Besides, previous research fails to consider the facial characteristics including occluded and unoccluded parts. To solve the above problems, we put forward a device-edge collaborative occluded face recognition method based on cross-domain feature fusion. Specifically, the device-edge collaborative face recognition architecture gets the utmost out of maximizes device and edge resources for real-time occluded face recognition. Then, a cross-domain facial feature fusion method is presented which combines both the explicit domain and the implicit domain facial. Furthermore, a delay-optimized edge recognition task scheduling method is developed that comprehensively considers the task load, computational power, bandwidth, and delay tolerance constraints of the edge. This method can dynamically schedule face recognition tasks and minimize recognition delay while ensuring recognition accuracy. The experimental results show that the proposed method achieves an average gain of about 21% in recognition latency, while the accuracy of the face recognition task is basically the same compared to the baseline method.