Abstract
Traditional face recognition methods usually complete facial expression recognition for designated faces, and the pixel set at the edge of face image is chaotic, which leads to poor accuracy of unspecified facial expression recognition. In order to improve the accuracy of unknown facial expression recognition, a method of unknown facial expression recognition based on machine learning is proposed. The feature detection model of unspecified facial expressions is constructed, and the features are divided into regional blocks. Fusion block feature information establishes a spatial feature projection model, weights the feature information entropy, extracts statistical features and edge information entropy features, reorganises features and matching edge pixel sets and completes the recognition of various facial expression features. Experimental results show that the accuracy of this method is significant, reaching 1, which effectively improves the recognition efficiency and anti-interference performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.