Exploring how human activity impacts land use/cover change (LUCC) is a hot research topic in the field of geography and sustainability management. Researchers have primarily used socioeconomic variables to measure human activity. However, the human activity indexes mainly based on socioeconomic variables have a spatial resolution that is coarser than traditional LUCC datasets, which hinders a deep and comprehensive analysis. In view of these problems, we selected China’s Lijiang River Basin as our study area and proposed the use of GPS trajectory data for analyzing the impact of human activity on LUCC from two perspectives: (1) Type of population: we used the kernel density estimation method to extract the spatial distribution of activity intensity of local residents and tourists, investigated their correlation with the LUCC result, and found these two populations have different impacts on each land cover; (2) Flow of population: we used the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and a network analysis method to build a flow network of population from raw trajectories, conducted regression analysis with LUCC, and found that the flow of population is an important factor driving LUCC and is sometimes a more important factor than the static distribution of the population. Experimental results validated that the proposed method can be used to uncover the impact mechanism of human activity on LUCC at fine-grained scales and provide more accurate planning and instructions for sustainability management.
Read full abstract