This paper proposes a physics-informed neural networks (PINNs) based approach for elastic structures with a V-notch, by which the displacement field, stress field as well as the V-notch stress intensity factor (NSIF) can be obtained through artificial neural networks. A PINN model is established for V-notch structures, integrating physical information into a deep neural network to ensure adherence to physical laws while fitting observational data. Subsequently, an adaptive local sampling strategy for V-notch structures is adopted, generating locally dense Gaussian points sampling around regions of stress concentration. Based on this, a sequential PINNs approach for V-notch structures is then established to calculate the NSIF for V-notch structures with arbitrary notch angles. Finally, the effectiveness of the proposed method is validated through three numerical examples. The results demonstrate the method can accurately predict the NSIFs for V-notch structures across a spectrum of opening angles. Compared to the traditional data-driven method, the proposed method is able to more effectively compute the NSIF of V-notch structures due to the integration of physical information and observational data.