Abstract
As an indispensable part in prognostics and health management (PHM) of mechanical systems, the remaining useful life (RUL) estimation has been studied widely and intensively. Recently, with the boom in deep learning, the traditional data-driven prognostic methods like the temporal convolutional neural networks (TCNs), have made remarkable progress in the RUL estimation. However, the conventional TCNs methods do not have a well-established mechanism to parallel weigh the dual-dimensional features of multi-sensory data. Moreover, the conventional TCNs have a fixed network structure which is not flexible to learn deep temporal representations. Here, we propose an adaptive model with dual-dimensional attention for aero-engine RUL prognostics. Specifically, the dual-dimensional multi-head attention (DMHA) module is constructed to assign weights to features in the spatial and temporal dimensions, and then preforms the feature fusion. The mathematical derivations of the DMHA module parameter iterations are performed, which enhances the interpretability of the model. Next, the adaptive TCN (ATCN) is designed to further learn the time correlations of the fused features. Compared with the traditional TCN, the ATCN can adjust the network structure adaptively and extract the deep temporal representations better. Last, the prediction ability of the DMHA-ATCN is verified by conducting experiments on the C-MAPSS dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.