When analyzing the reliability of low-voltage switchgear by Bayesian method, the maximum entropy multisource information fusion method was proposed to obtain the prior information of low-voltage switchgear and then evaluate the reliability. The historical data of low-voltage switchgear was collected and organized from a manufacturer. According to the expert experience and the data, the creditability analysis and the compatibility test were presented by the Smirnov test method. Based on the high creditability and compatibility, the result of the maximum entropy multisource information fusion method is the determination of prior information. Therefore, the distribution type of the prior information was confirmed by using the maximum entropy method, and the parameter of the prior information was received by bootstrap method with MATLAB. Then the posterior distribution was obtained to evaluate the MTBF of low-voltage switchgear. Finally, the historical data of years from 2007 to 2010 was taken as prior information to illustrate the maximum entropy multisource information fusion method and to get the MTBF of low-voltage switchgear. The evaluation result reduces the experimental period and test cost, which is an improvement for the reliability evaluation and management of low-voltage switchgear and also an improvement for other systems with simple sample data. Compared with traditional Bayesian networks, the proposed method can fuse experts experience and historical data and has advantages for the use of prior information effectively.