As track components deteriorate, their interaction dynamic response will alter accelerations on the train. Measuring acceleration on train components is a method to conduct condition monitoring of track defects. The measured signal can be used for the detection of rail surface defects which implement impacts on measured accelerations. In this paper, the axle-box acceleration (ABA) is measured in a subway as a case study. Fourier transform (FFT), empirical mode decomposition (EMD) and ensemble EMD (EEMD) methods are used to study accelerations relative to the track. Wheel frequencies are calculated using finite element method (FEM) to determine frequency couplings. Velocity-dependent/independent components and source of excitation of the measured signal are distinguished. Results indicated that the FFT approach can be applied for both velocity-dependent and velocity-independent vibration components for frequencies up to 680 Hz. Also, the EEMD method can be used to distinguish the impact component of the measured signal.