Let $A$ be a unital $C^*$-algebra and let $U_0(A)$ be the group of unitaries of $A$ which are path connected to the identity. Denote by $CU(A)$ the closure of the commutator subgroup of $U_0(A).$ Let $i_A^{(1, n)}\colon U_0(A)/CU(A)\rightarrow U_0(\mathrm M_n(A))/CU(\mathrm M_n(A))$ be the \hm\, defined by sending $u$ to ${\rm diag}(u,1_n).$ We study the problem when the map $i_A^{(1,n)}$ is an isomorphism for all $n.$ We show that it is always surjective and is injective when $A$ has stable rank one. It is also injective when $A$ is a unital $C^*$-algebra of real rank zero, or $A$ has no tracial state. We prove that the map is an isomorphism when $A$ is the Villadsen's simple AH--algebra of stable rank $k>1.$ We also prove that the map is an isomorphism for all Blackadar's unital projectionless separable simple $C^*$-algebras. Let $A=\mathrm M_n(C(X)),$ where $X$ is any compact metric space. It is noted that the map $i_A^{(1, n)}$ is an isomorphism for all $n.$ As a consequence, the map $i_A^{(1, n)}$ is always an isomorphism for any unital $C^*$-algebra $A$ that is an inductive limit of finite direct sum of $C^*$-algebras of the form $\mathrm M_n(C(X))$ as above. Nevertheless we show that there are unital $C^*$-algebras $A$ such that $i_A^{(1,2)}$ is not an isomorphism.
Read full abstract