AbstractLet $\Theta =(\theta _{j,k})_{3\times 3}$ be a nondegenerate real skew-symmetric $3\times 3$ matrix, where $\theta _{j,k}\in [0,1).$ For any $\varepsilon>0$ , we prove that there exists $\delta>0$ satisfying the following: if $v_1,v_2,v_3$ are three unitaries in any unital simple separable $C^*$ -algebra A with tracial rank at most one, such that $$\begin{align*}\|v_kv_j-e^{2\pi i \theta_{j,k}}v_jv_k\|<\delta \,\,\,\, \mbox{and}\,\,\,\, \frac{1}{2\pi i}\tau(\log_{\theta}(v_kv_jv_k^*v_j^*))=\theta_{j,k}\end{align*}$$ for all $\tau \in T(A)$ and $j,k=1,2,3,$ where $\log _{\theta }$ is a continuous branch of logarithm (see Definition 4.13) for some real number $\theta \in [0, 1)$ , then there exists a triple of unitaries $\tilde {v}_1,\tilde {v}_2,\tilde {v}_3\in A$ such that $$\begin{align*}\tilde{v}_k\tilde{v}_j=e^{2\pi i\theta_{j,k} }\tilde{v}_j\tilde{v}_k\,\,\,\,\mbox{and}\,\,\,\,\|\tilde{v}_j-v_j\|<\varepsilon,\,\,j,k=1,2,3.\end{align*}$$ The same conclusion holds if $\Theta $ is rational or nondegenerate and A is a nuclear purely infinite simple $C^*$ -algebra (where the trace condition is vacuous). If $\Theta $ is degenerate and A has tracial rank at most one or is nuclear purely infinite simple, we provide some additional injectivity conditions to get the above conclusion.
Read full abstract