The use of tracheal implants for tracheal reconstruction remains a challenge in thoracic medicine due to the complex structure of the trachea in mammalian organisms, including smooth muscles, cartilage, mucosa, blood vessels, cilia, and other tissues, and the difficulty in achieving tracheal regeneration using implants from either allografts or synthetic biomaterials. This project used the Lee-Sung strain pig, a swine breed local to Taiwan, as the experimental subject. The aorta of the pig was harvested, decellularized to form the scaffold, and transplanted into the trachea of allogeneic pigs together with growth factors. Postoperative physiological function and tissue changes were observed. The postoperative physiological parameters of the LSP were monitored, and they were sacrificed after a certain period to observe the pathological changes in the tracheal epithelial cells and cartilages. Overall, six LSP tracheal transplantations were performed between March 4, 2020, and March 10, 2021. These included aortic patch anastomosis for pig 1 and aortic segmental anastomosis for pigs 2-6. The shortest and longest survival periods were 1 day and 147 days, respectively. Excluding the pig that survived for only 1 day due to a ruptured graft anastomosis, all other subjects survived for over 1 month on average. In this study, we grafted a decellularized porcine aorta into a recipient pig with a tracheal defect. We found cryopreservation of the allogeneic aorta transplantation was a feasible and safe method for the management of airway disease, and immunosuppressants were unnecessary during the treatment course.
Read full abstract