The Taihe Black-Bone silky fowl chicken (BB-sfc) is a renowned dietary and medicinal chicken globally recognized for its high nutritional and medicinal value. Compared to the local Black-Bone black-feathered chicken (BB-bfc), the Taihe silky fowl chicken has higher levels of amino acids, trace elements, and unsaturated fatty acids in their muscles, which offer anti-aging, anti-cancer, and immune enhancing benefits. Despite this, the unique nutritional components, genes, and proteins in Taihe silky fowl chicken muscles are largely unknown. Therefore, we performed a comprehensive transcriptome and proteome analysis of muscle development between BB-sfc and BB-bfc chickens using RNA-Seq and TMT-based quantitative proteomics methods. RNA-Seq analysis identified 286 up-regulated genes and 190 down-regulated genes in BB-sfc chickens, with oxidoreductase activity and electron transfer activity enriched in up-regulated genes, and phospholipid homeostasis and cholesterol transporter activity enriched in down-regulated genes. Proteome analysis revealed 186 significantly increased and 287 significantly decreased proteins in Taihe BB-sfc chicken muscles, primarily affecting mitochondrial function and oxidative phosphorylation, crucial for enhancing muscle antioxidant capacity. Integrated transcriptome and proteome analysis identified 6 overlapped up-regulated genes and 8 overlapped down-regulated genes in Taihe silky fowl chicken, related to improved muscle antioxidant status. Taken together, this research provides a comprehensive database of gene expression and protein information in Taihe Black-Bone silky fowl chicken muscles, aiding in fully exploring their unique economic value in the future.