Measuring the location of necrotic lesions is necessary to diagnosis of osteonecrosis. Different region segmentation methods of the femoral head were proposed to quantitatively measure necrotic lesions including Japanese Investigation Committee for Avascular Necrosis (JIC) classification and China-Japan Friendship Hospital (CJFH) classification. Biomechanical methods could bring important information to evaluate the reasonability of these classifications. In this study, microstructural and mechanical properties of trabecular bone were quantitatively analyzed according to the region segmentation methods described in these classifications. Microstructural parameters of trabecular bone were analyzed based on micro-CT scanning. Mechanical properties were measured through Nanoindentation and micro-finite element analysis. It was found that microstructural and mechanical properties of trabecular bone in the middle region was more adaptive to load bearing than the medial and lateral regions according to the CJFH classification; lesions in the middle region could bring more changes to microstructure and stress distribution. According to JIC classification, differences of microstructural and mechanical properties among the three regions were not significant. Biomechanical characteristics of trabecular bones could be better distinguished with CJFH classification.