Regeneration of lost body parts is a widespread phenomenon across annelids. However, the molecular inducers of the cell sources for this reparative morphogenesis have not been identified. We have identified a regeneration-related gene Oxfibrillin from the transcriptome analysis of a polychaeta, Ophryotrocha xiamen, which is found to be a well-suited model to study the mechanisms of regeneration. Fibrillins are large glycoproteins that assemble to form the microfibrils and regulate growth factors or other transfer processes. Here, we obtained the 31,274 bp genomic DNA sequences of Oxfibrillin. The coding sequence length was 5784 bp encoding 1927 amino acids with a VWD domain, EGF/cb-EGF domains, a TR domain, and a transmembrane domain. Oxfibrillin was positioned within the subgroup of invertebrates and showed low scores for homology to mammalian fibrillin. In gene expression analysis, Oxfibrillin genes were constantly upregulated during the early regeneration process and then remained stable until the formation of the complete tail which indicated that it might be a vital factor to affect posterior regeneration process. Therefore, the Oxfibrillin of O. xiamen might play important roles in the regeneration process.