Algal toxins are secondary metabolites produced by harmful algae; these metabolites are characterized with strong toxicity, diverse structure and bioaccumulation. Aquatic organisms that feed on harmful algae can accumulate algal toxins in their bodies, and the consumption of these organisms by humans can cause symptoms of paralysis, diarrhea, and even death. The onset of poisoning can occur within as little as 30 min; in many cases, no suitable antidote for algal toxins is available. Thus, algal toxins present significant threats to human health, the aquaculture industry, and aquatic ecosystems. Because the potential risks of algal toxins are a critical issue, these toxins have become a research hotspot. The water environment and various types of aquatic products should be monitored and analyzed to ensure their safety. However, because of possible matrix effects and the low content of algal toxins in actual samples, an efficient pretreatment method is necessary prior to instrumental analyses. Efficient sample pretreatment techniques can not only reduce or eliminate interferences from the sample matrix during analysis but also enrich the target analytes to meet the detection limit of the analytical instrument, thereby ensuring the sensitivity and accuracy of the detection method. In recent years, sample pretreatment techniques such as solid-phase extraction (SPE), solid-phase microextraction (SPME), magnetic SPE (MSPE), dispersive SPE (DSPE), and pipette tip-based SPE (PT-SPE) have gained wide attention in the field of algal-toxin separation and analysis. The performance of these pretreatment techniques largely depends on the characteristics of the extraction materials. Given the diverse physicochemical properties of algal toxins, including their different molecular sizes, hydrophobicity/hydrophilicity, and charges, the design and preparation of materials suitable for algal-toxin extraction is an essential undertaking. The optimal extraction material should be capable of reversible algal-toxin adsorption and preferably possess a porous structure with a large surface area to allow for high recovery rates and good interfacial contact with the toxins. Additionally, the extraction material should exhibit good chemical stability in the sample solution and elution solvent within the working pH range; otherwise, it may dissolve or lose its functional groups. Many research efforts have sought to develop novel adsorbent materials with these properties in the separation and analysis of algal toxins, focusing on carbon-based materials, metal organic frameworks (MOFs), covalent organic frameworks (COFs), molecularly imprinted polymers (MIPs), and their functionalized counterparts. Carbon-based materials, MOFs, and COFs have advantages such as large surface areas and abundant adsorption sites. These extraction materials are widely used in the separation and analysis of target substances in complex environmental, biological, and food samples owing to their excellent performance and unique microstructure. They are also the main adsorbents used for the extraction of algal toxins. These extraction materials play an essential role in the extraction of algal toxins, but they also present a number of limitations: (1) Carbon-based materials, MOFs, and COFs have relatively poor selective-adsorption ability towards target substances; (2) Most MOFs are unstable in aqueous solutions and challenging to apply during extraction from water-based sample solutions; (3) COFs mainly consist of lightweight elements, rendering them difficult to completely separate from sample solutions using centrifugal force, which limits their application range; (4) Although MIPs have good selectivity, issues such as template-molecule loss, slow mass-transfer rates, and low adsorption capacity must be addressed. Therefore, the design and preparation of novel functionalized extraction materials specifically tailored for algal toxins and studies on new composite extraction materials are highly desirable. This article collects representative literature from domestic and international research on algal-toxin analysis over the past decade, summarizes the relevant findings, categorizes the applications of novel functional materials in algal-toxin-extraction processes, and provides an outlook on their future development prospects.