Toxin/antitoxin (TA) systems are present in nearly every prokaryotic genome and play the important physiological roles of phage inhibition by reducing metabolism (this includes persistence for the extreme case of complete cessation of metabolism), genetic element stabilization, and biofilm formation. TA systems have also been incorporated into other cell systems, such as CRISPR-Cas and phage quorum sensing. For the simplest and best-studied case, proteinaceous toxins and antitoxins (i.e., type II), toxin activity is masked by direct binding of the antitoxin. A long-standing, unresolved question in the TA field is how toxins are activated when bound to antitoxins at nanomolar affinity. The current paradigm envisions preferential degradation of the antitoxin by a protease, but this is highly unlikely in that a protease cannot discriminate between bound toxin and bound antitoxin because both are highly structured. Strikingly, recent results from several studies show one likely mechanism for toxin activation is conformational changes in the TA complex that result in the release or activation of the toxin as a result of a protein trigger, such as that from phages, and as a result of thermally-driven refolding dynamics.
Read full abstract