Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies. However, current investigations have implicated tau toxicity in other NDs that affect the central nervous system (CNS), including Parkinson's disease (PD), Huntington's disease (HD), Traumatic brain injury (TBI), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). These diseases are long-term acquired, affecting essential functions such as motor movement, cognition, hearing, and vision. Previous evidence indicated that toxic forms of tau do not have a critical contribution to the genesis or progression of these diseases. However, recent studies have shown that these tau forms contribute to neuronal dysfunction, inflammation, oxidative damage, and mitochondrial impairment events that contribute to the pathogenesis of these NDs. Recent studies have suggested that these neuropathologies could be associated with a prion-like behavior of tau, which induces a pathological dissemination of these toxic protein forms to different brain areas. Moreover, it has been suggested that this toxic propagation of tau from neurons into neighboring cells impairs the function of glial cells, oligodendrocytes, and endothelial cells by affecting metabolic function and mitochondrial health and inducing oxidative damage by tau pathology. Therefore, in this review, we will discuss current evidence demonstrating the critical role of toxic tau forms on NDs not related to AD and how its propagation and induced-bioenergetics failure may contribute to the pathogenic mechanism present in these NDs.
Read full abstract