Surface or ground waters can be contaminated with numerous toxic substances. The duckweeds Lemna minor and Lemna gibba are widely used for assaying waterborne toxicity to higher plants in terms of growth inhibition and photosynthetic pigment reduction. These tests cannot, however, in themselves determine the nature of the agents responsible for toxicity. Morphological, developmental, physiological, biochemical, and genetic responses of duckweeds to exposure to toxic water contaminants constitute biomarkers of toxic effect. In principle, the very detection of these biomarkers should enable the contaminants having elicited them (and being responsible for the toxicity) to be identified. However, in practice, this is severely compromised by insufficient specificity of biomarkers for their corresponding toxicants and by the lack of documentation of biomarker/toxin relationships. The present contribution illustrates the difficulties of using known water contaminant-related duckweed biomarkers to identify toxins, and discusses possibilities for achieving this goal.