Zircon and baddeleyite occur within quartz–tourmaline veins at four gold deposits in the Val-d'Or district of the Archean Abitibi Southern Volcanic Zone. Host rocks have experienced intense metasomatic enrichment of Zr, Hf, Y, and rare earth elements. The zircons contain primary inclusions of quartz, tourmaline, pyrite, albite, K-mica, scheelite, and gold, and gold occurs in primary fluid inclusions in zircons. Magmatic zircons in host rocks do not have this suite of inclusions; consequently a wall-rock inheritance model for the vein zircons is implausible. Compositionally, the zircons feature pronounced interzone and intergrain variations of Hf, Y, Yb, Th, and U, and sporadic anomalous Ce contents of ~ 1100 ppm, distinct from magmatic counterparts. Two principal types of primary fluid inclusion occur in the vein zircons. Type 1 H2O–CO2 inclusions have low salinities, variable quantities of CO2 and homogenization temperatures of 260–380 °C, and type 2 CO2 rich inclusions contain minor H2O and CH4. The vein zircons coprecipitated at 260–380 °C and ~ 2 kbar (1 kbar = 100 MPa) with coexisting minerals of undisputed hydrothermal origin, such as vein quartz and gold. In the Superior Province, mesothermal gold deposits are related in space and time to translithospheric structures that mark the diachronous accretion of allochthonous subprovinces from north to south between ~ 2710 and 2680 Ma. Consequently, vein zircon ages of ~ 2680 Ma record the primary mineralizing event, whereas aberrantly young ages for rutile, titanite, scheelite, and micas in the same vein systems, that scatter over 2630–2579 Ma, reveal the age of secondary remobilization events.