The single particle reconstruction (SPR) in cryogenic electron microscopy is considered in this paper. This is an emerging technique for determining the three-dimensional (3D) structure of biological specimens from a limited number of the micrographs. Because the micrographs are modulated by contrast transfer functions and corrupted by heavy noise, the number of micrographs might be limited, in general it is a serious ill-posed problem to reconstruct the original particle. In this paper, we propose a constrained total variation (TV) model for single particle reconstruction. The TV norm is represented by the dual formulation that changes the SPR problem into a minimax one. The primal-dual method is applied to find the saddle point of the minimax problem, and the convergence condition is given. Numerical results show that the proposed model is very effective in reconstructing the particle.