Causes of papilledema can be life-threatening; however, distinguishing papilledema from pseudopapilledema is often challenging. The conventional optical coherence tomography (OCT) scan for assessing the optic nerve often fails to detect mild papilledema. Our study suggests that parameters derived from volumetric OCT scans can provide additional useful information for detecting papilledema. Optical coherence tomography analysis of the optic nerve commonly measures retinal nerve fiber layer thickness (RNFLT) along a 1.73-mm-radius scan path. This conventional scan, however, often fails to detect mild papilledema. The purpose of this study was to evaluate additional OCT-derived measures of the optic nerve head (ONH) and peripapillary retina for differentiating papilledema (all grades and mild) from pseudopapilledema. Cirrus OCT ONH volume scans were acquired from 21 papilledema (15 mild papilledema), 27 pseudopapilledema, and 42 control subjects. Raw scan data were exported, and total retinal thickness within Bruch's membrane opening (BMO) plus RNFLT and total retinal thickness at the following eccentricities were calculated using custom algorithms: BMO to 250, 250 to 500, 500 to 1000, and 1000 to 1500 μm. Minimum rim width was calculated, and BMO height was measured from a 4-mm Bruch's membrane reference plane centered on the BMO. Retinal nerve fiber layer thickness from BMO to 250 μm, minimum rim width, and BMO height had significantly greater areas under the receiver operating characteristic curve than did conventional RNFLT for differentiating mild papilledema from pseudopapilledema (P < .0001) and greater sensitivities at 95% specificity. Using cutoff values at 95% specificity, custom parameters detected 10 mild papilledema patients, and conventional RNFLT detected only 1. Bruch's membrane opening heights above the reference plane were observed in papilledema only, although many papilledema cases had a neutral or negative BMO height. Using OCT volumetric data, additional parameters describing peripapillary tissue thickness, neuroretinal rim thickness, and ONH position can be calculated and provide valuable measures for differentiating mild papilledema from pseudopapilledema.
Read full abstract