Herein, the long-standing challenge of the ring-opening aminolysis of CO2-derived tetrasubstituted cyclic carbonates at room temperature (r.T) is overcome under catalyst-free conditions. Molecular design of the cyclic carbonate by substitution of an alkyl group by a thioether unlocks quantitative conversion at r.T and ensures total regioselectivity toward highly substituted oxazolidone scaffolds. An in-depth rationalization of the high reactivity of these cyclic carbonate structures and of the aminolysis reaction mechanism is provided by a computational study supporting experimental observations. The high efficiency of the reaction is then translated to the deconstruction of high-performance thermoplastics containing tetrasubstituted cyclic carbonate linkages to deliver building blocks that are reused for designing recyclable thermosets bearing dynamic N,S-acetal linkages.
Read full abstract