The present paper analyses the results of a detailed experimental study on low profile vortex generators used to control the turbulent boundary layer separation on a large-scale flat plate with a prescribed adverse pressure gradient, typical of aggressive turbine intermediate ducts. This activity is part of a joint European research program on Aggressive Intermediate Duct Aerodynamics (AIDA). Laser Doppler Velocimetry and a Kiel total pressure probe have been employed to perform measurements in the test section symmetry plane and in cross-stream planes to investigate the turbulent boundary layer, with and without control device application. Velocity fields, Reynolds stresses, and total pressure distributions are analysed and compared for the controlled and non controlled flow conditions to characterize the mean flow behaviour. The detail and the accuracy of the measurements allow the evaluation of the deformation works of the mean motion in the test section symmetry plane. Normal and shear contributions of viscous and turbulent deformation works have been analysed and employed to explain the distribution of the total pressure loss. For the controlled flow the discussion of the flow field is extended considering the effects of the vortex generated in the cross-stream planes. The experimental data allow the evaluation of the global amount of losses, considering a balance of total pressure fluxes in the different measuring planes.