Agave attenuata is a Mexican wild plant originally from highlands in the central and occidental mountains of Mexico. This species, known as "swan´s neck agave", is used only as an ornamental plant in public and private gardens. No virus had previously been reported from A. attenuata before this study. In a survey conducted in a commercial greenhouse in Cuautla, Morelos, in 2018, several plants were observed with symptoms of green mosaic and streaks, consistent with a putative viral infection. Sap inoculation from symptomatic A. attenuata plants to herbaceous indicator plants (Nicotiana benthamiana and N. tabacum) failed to produce symptoms in the mechanically inoculated plants. ELISA specific test to CMV, TEV, AMV, TMV and Potyvirus Group (Agdia, Inc.), was positive only for the last one (Chen and Chang, 1998). To determine the identity of the potyvirus involved, total nucleic acid extracts from 100 mg of symptomatic leaves (Trizol reagent; Gibco BRL Life Technologies, England) were used as template in RT-PCR with genus-specific potyvirus primers POT1-POT2, which targeted the variable 5´ terminal half of the coat protein gene of potyviruses (Colinet et al. 1998). The expected 900 bp amplicon was consistently detected in 10 symptomatic A. attenuata plants whereas no PCR products were obtained from 15 asymptomatic A. attenuata plants collected from the "Agaves de México" section at the 'Botanic Garden' of the Instituto de Biología de la UNAM, México. The amplicons were sequenced by the Sanger´s method and the obtained nucleotide (nt) sequences (Acc. No KY190217.1; OP964597-598) and their derived amino acid (aa) sequences were 94.68% to 95.80% similar to an isolate of Tuberose mild mosaic virus (TuMMV; Potyvirus; (Acc. No ON116187.1) characterized from Agave amica in India (Raj et al. 2009). Interestingly, A. amica (formerly Poliantes tuberose) is also a wild Mexican plant that is geographically distributed in the central and south regions of Mexico and is currently being commercially cultivated as an ornamental plant. Plants of A. amica (n=10) showing yellow mild streak were collected from commercial greenhouse and tested positive for TuMMV by RT-PCR and Sanger sequencing (No Acc. OP964599-601 levels) described above. The derived TuMMV sequences from A. attenuata and A. amica were 99-100% similar to each other at the nt/aa level. To exclude the involvement of additional viral agents in the disease, high-throughput sequencing analysis was performed separately for each species of Agave on total RNA extracts from a composite sample of symptomatic leaf tissues using Illumina´s Next Seq 500 platform. Analysis of the obtained 13,260,700 reads (each 75 nt) by the Trinity software, with a total number of sequences of 22,793, resulted in the identification of a single viral contig of 9500 nt for A. attenuata (Acc. No OP964595). Similarly, for A. amica, 27,262,248 reads were obtained, with a total number of sequences of 23,269, resulting in the identification of a single viral contig of 8500 nt (ACC. No OP964602). These contigs showed an identity percentage of 96%/88% and 98%/96% for nucleotides and amino acids, respectively, compared to an isolate of TuMMV from India (Acc. OM293939). Mexico is a center of origin for numerous species of genus Agave which have high economic, social, and ecological impact. TuMMV could be a threat to these plants and potentially to other unknown susceptible crops. To our knowledge, this is the first report of TuMMV in A. attenuata and A. amica in Mexico. REFERENCE Chen, C. C., and Chang, C. A. 1998. Characterization of a potyvirus causing mild mosaic on tuberose. Plant Dis. 82:45-49. Colinet, D., Nguyen, M., Kummert, J., Lepoivre, P., and Xia, F. Z. 1998. Differentiation among potyviruses infecting sweet potato based on genus- and virus-specific reverse transcription polymerase chain reaction. Plant Dis. 82:223-229. Raj, S.K., Snehi, S.K., Kumar, S., Ram, T. and Goel, A.K. 2009. First report of Tuberose mild mosaic potyvirus from tuberose (Polianthes tuberosa L.) in India. Australasian Plant Dis. Notes 4, 93-95.
Read full abstract