We used a null-balance porometer to measure leaf conductance of mature and primary leaves of natural seedlings, saplings, and trees of Pinus roxburghii (chir) during autumn at four sites at 1,320–1,930 m elevation in the central Himalaya of India. Our hypothesis that primary leaves had higher leaf conductance than mature leaves (needles in fascicles), based on measurements in other pines, was rejected. Comparisons on the same saplings and seedlings showed lower leaf conductance for primary leaves than for mature leaves. Primary leaves on seedlings and saplings also did not consistently have higher leaf conductance than mature leaves on near-by trees. Mature leaves on seedlings, however, did often have higher conductance than mature leaves on nearby trees. Mean values for leaf conductance (mmol m−2 s−1, based on total leaf surface area) ranged from 42–82 for mature leaves on trees, 60–121 for mature leaves on seedlings, and 28–67 for primary leaves on seedlings. Compared to published values for other pine species, conductance of mature leaves ofP. roxburghii is relatively low.