The purpose of this paper is to deal with the problem of heat and power integration on one side and the problem of minimizing heat exchange areas on the other side, in both conventional and nonconventional distillation columns. We consider the limiting case of columns operating at minimum reflux. The appropriate objective functions that one must consider are the entropy production rate and the total heat exchange area, respectively. This is done by means of optimal placement of a given number of interheaters (IHs) and intercoolers (ICs) in stripping and rectifying sections, respectively. To solve these problems, an appropriate thermodynamic model for both conventional and nonconventional distillative columns is formally presented. This model allows us to formulate an optimization problem involving thermodynamically reversible profiles in stripping and rectifying sections of the columns. Our approach differs from others previously reported in that multiple reversible profiles were identified for each section of the column which give rise to lower and upper bounds for the objective function of the minimization problem. In other words, we obtain two solutions for each column section: the first is a nonoptimal feasible one, and the second is an optimal but not necessarily feasible one. Finally, the comparison of our approach with a method based on pseudobinary reversible profiles is carried out. Optimizing with this curve, solutions will be generated with objective function values between our lower and upper bounds. Therefore, care would be taken in using a pseudobinary pinch point curve for the placement of intermediate heat-exchanger units especially when the difference between our upper and lower bounds for the objective function values is relatively great.