Proteins have been recognized for a long time as an important dietary nutritional component for all animals. Most amino acids were isolated and characterized in the late nineteenth and early twentieth century. Initially dietary proteins were ranked high to low quality by growth and N balance studies. By the 1950s interest had shifted to studying the roles of individual amino acids in amino acid requirements by feeding studies with non-ruminants as rodents, poultry and pigs. The direct protein feeding approaches followed by measurements of nutritional outcomes were not possible however in ruminants (cattle and sheep). The development of measuring free amino acids by ion exchange chromatography enabled plasma amino acid analysis. It was thought that plasma amino acid profiles were useful in nutritional studies on proteins and amino acids. With non-ruminants, nutritional interpretations of plasma amino acid studies were possible. Unfortunately with beef cattle, protein/amino acid nutritional adequacy or requirements could not be routinely determined with plasma amino acid studies. In dairy cows, however, much valuable understanding was gained from amino acid studies. Concurrently, others studied amino acid transport in ruminant small intestines, the role of peptides in ruminant N metabolism, amino acid catabolism (in the animal) with emphasis on branched-chain amino acid catabolism. In addition, workable methodologies for studying protein turnover in ruminants were developed. By the 1990s, nutritionists could still not determine amino acid requirements with empirical experimental studies in beef cattle. Instead, computer software (expert systems) based on the accumulated knowledge in animal and ruminal amino acids, energy metabolism and protein production were realized and revised frequently. With these tools, theamino acid requirements, daily energy needs, ruminal and total gastrointestinal tract digestion and performance of growing beef cattle could be predicted.