We consider a total flow time minimisation problem of uniform parallel machine scheduling when job processing times are only known to be bounded within certain given intervals. A minmax regret model is proposed to identify a robust schedule that minimises the maximum deviation from the optimal total flow time over all possible realisations of the job processing times. To solve this problem, we first prove that the maximal regret for any schedule can be obtained in polynomial time. Then, we derive a mixed-integer linear programming (MILP) formulation of our problem by exploiting its structural properties. To reduce the computational time, we further transform our problem into a robust single-machine scheduling problem and derive another MILP formulation with fewer variables and constraints. Moreover, we prove that the optimal schedule under the midpoint scenario is a 2-approximation for our minmax regret problem. Finally, computational experiments are conducted to evaluate the performance of the proposed methods.