Windows offer the most promising avenue for mitigating energy consumption and reducing greenhouse gas emissions. However, the balance between comfortable natural lighting and all-season energy savings is often neglected in extensive explorations of energy-efficient windows. Herein, a Janus glazing is proposed that enables the switch of passive radiative cooling and heating under the precondition of conveying sufficient natural light. Measurement results indicate that the Janus window maintains a visible transmittance of 0.47, while possesses a near-infrared (NIR) reflectivity/absorptivity of 0.75/0.71 and a mid-infrared (MIR) emissivity of 0.94/0.13 for the cooling and heating modes, respectively. As demonstrated by the outdoor test, the Janus window realizes a reduction of 7.1°C for room cooling and an increase of 0.4°C for room heating compared with commercial low-e window, potentially conserving 13%-53% of the total building energy consumption across China. Meanwhile, attributed to the photothermal effect, the Janus window can elevate the surface temperature by 6.1°C compared with the low-e window, which can effectively reduce fogging occurrences on the window surface for ensuring sunlight entrance in the cold-weather conditions. This strategy offers novel prospects for enhancing energy efficiency in diverse applications, including architectural windows, greenhouse cultivation, photovoltaic generation, etc.
Read full abstract