This study explores the potential of converting High-Density Polyethylene (HDPE) and Low-Density Polyethylene (LDPE) waste into liquid hydrocarbon fuels through catalytic degradation using fly ash. It achieves significant conversion rates, with HDPE reaching over 95% total conversion and a 66.4% oil yield at a catalyst-to-polymer ratio of 0.20, while LDPE shows a 100% conversion rate at ratios of 0.15 and 0.20. The process not only yields hydrocarbons with decreasing density and increasing calorific values, up to 55 MJ/kg for HDPE and 47 MJ/kg for LDPE at optimal conditions but also produces fractions with properties similar to diesel, notably in terms of density and viscosity. The flashpoint and fire point values further affirm these products' potential as viable fuel sources, aligning closely with diesel standards. 1H NMR spectroscopy analysis reveals a composition rich in long-chain alkanes and alkenes, indicating the efficient transformation of plastic waste into valuable energy resources. This research presents a promising avenue for recycling plastic waste into alternative fuels, highlighting a sustainable approach to waste management and energy recovery.
Read full abstract