The gas phase selective hydrocracking process of tetralin (biomass tar model chemical compound) into benzene, toluene and xylenes (BTX) was carried out over the H-Beta, H-Mordenite, H-USY, H-Y, and H-ZSM-5 zeolite catalysts in a packed bed reactor under applied atmospheric pressure. To the best of our scientific knowledge, this performed work presents the first systematic investigation, focused on tetralin, cracking to BTX under ambient 1bar. The highest catalytic activity and carbon deposition resistance were established over the H-ZSM-5 (SiO2/Al2O3=30) with the selectivity to the BTX of 52.2mol.% in intermediates’ liquid phase, 88.7mol.% of total conversion yield after the 4h time on stream, 370°C and gas hourly space velocity (GHSV)=530h–1, and limited site deactivation. The gas phase was analyzed and ethylene, propane, ethane and methane were identified as main gas products in the product mixture at different reaction conditions. All catalysts were characterized by BET, ICP-AES, XRD, HRSEM, NH3-TPD, and pyridine-DRIFT technique. This high catalytic performance of the H-ZSM-5 catalyst is attributed to the presence the high mesopore volume and mesopore surface area, the mild acidity and the highest Brönsted to Lewis acid sites ratio (BAS/LAS) comparing with other studied zeolite catalysts. Based on the experimental results, the reaction pathway of tetralin transformation into BTX was proposed. Hydrocracking, ring opening, ring contraction, dehydrogenation/hydrogenation, alkylation/dealkylation, isomerization, and overcracking reactions were involved. Results were consistent with the occurrence of the monomolecular reaction mechanism.
Read full abstract