The study was conducted to evaluate the effect of the timing of feeding maize silage before a short herbage meal on dry matter (DM) intake, milk production, nitrogen (N) partitioning and rumen function of lactating dairy cows. Ten lactating, pregnant, Friesian × Jersey rumen-fistulated dairy cows aged 4–5 years were blocked in pairs by milksolids (MS; sum of protein and fat) production (1.73 ± 0.097 kg MS/cow.day; mean ± s.d.), bodyweight (519 ± 24.7 kg), days in milk (163 ± 12.5), and body condition score (3.9 ± 0.21). Cows within pairs were randomly allocated to one of two treatments: (1) five cows were offered one-third of their estimated total DM intake (5 kg/cow.day) as maize silage after the afternoon milking at 1500 hours, ~1 h before herbage was provided (1BH); (2) five cows were offered one-third of their estimated total DM intake as maize silage after morning milking at 0700 hours, ~9 h before herbage was provided (9BH). All cows were offered two-thirds of their total estimated DM intake (11 kg/cow.day) over a period of 4 h from 1600 hours to 2000 hours as freshly cut perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens) in an indoor system. Cows were adapted to diets for 9 days (Days 1–9), followed by 5 days of measurement (Days 10–14). Maize silage DM intake did not differ between treatments averaging 5.1 kg DM/cow.day. Herbage DM intake was greater (P = 0.02) for 9BH (11.2 kg DM/cow.day) than 1BH (10.4 kg DM/cow.day). Milk yield (P = 0.001) and MS production (P = 0.08) were greater for 9BH than 1BH (18.8 vs 15.4 kg/cow.day and 1.63 vs 1.48 kg MS/cow.day, respectively). There was no effect of time of supplementation on N partitioned to milk, faeces, or urine. The purine derivatives to creatinine ratio, as an indication of microbial protein production, was greater (P = 0.04) for 9BH than 1BH. Daily mean rumen pH and the concentration of total rumen volatile fatty acids, acetate, butyrate, and ammonia N were not affected by treatment. However, the peak concentration of ruminal ammonia N was 27% lower (P < 0.05) for 9BH than 1BH. The concentration of non-esterified fatty acid (P = 0.03) and beta-hydroxy butyric acid (P = 0.01) were greater for 1BH than 9BH (0.14 vs 0.09 and 0.81 vs 0.71 mmol/L, respectively). These results indicate that under herbage feed restriction, altering the time of supplementation relative to the herbage meal can increase herbage DM intake and subsequent milk production.