This study quantitatively investigates the influence of loading parameters and directions on the behavior of small fatigue cracks (SFC) in commercially pure titanium (CP-Ti). It is observed that reductions in peak stress and increases in stress ratio correlate with a decrease in SFC growth rate and an intensification of growth rate fluctuations. Notably, crack growth along the transverse direction (TD) generally exhibits lower rates compared to that along the rolling direction (RD), with more pronounced fluctuations. Through metallographic analysis of crack paths, roughness-induced crack closure (RICC) is identified as a significant factor contributing to the observed variations in SFC growth behavior under different loading conditions. Furthermore, electron backscatter diffraction (EBSD) characterization reveals that crack propagation along the RD is primarily governed by prismatic slip, while TD samples exhibit more engagement of non-prismatic slip systems with higher activation stress. This results in a more tortuous crack path and pronounced crack arrest phenomena. Finally, a modified multi-scale rate prediction model based on the reference stress ratio method is proposed. Comparative analysis demonstrates that the modified model outperforms existing models by offering enhanced predictive capability across diverse loading conditions, thereby reinforcing its robustness in predicting SFC behavior of CP-Ti.
Read full abstract