A shaft is subjected to tensile stress, compressive stress, torsional force and bending moment due to reaction on the components. The stress distribution in a shaft can be is similar to the flow of fluid in a channel. So, it is perfectly logical to use the fluid analogy to understand the phenomenon of stress concentration. When the cross section is uniform the flow is uniform whereas if there is a sudden change in the cross section then the velocity increases to keep the flow rate constant .The same phenomenon is observed in the shaft i.e. when the cross section of the shaft is uniform throughout , the stresses are uniform where as if the cross section changes abruptly then the stress lines come closer to each other in order to keep the force same . When there are sharp changes then it results in stress concentration.The effect of stress concentration can be reduced effectively as there are numerous discontinuities which makes it impossible to eradicate it fully .This could be done by numerous some of which are removal of material , providing fillet radius and also by choosing appropriate material for manufacturing . Software like Solid works can be used for the design and analysis of the component. An object drawn with Solid works can be analysed interactively and physical information can be extracted from it.
Read full abstract