In this paper we study graded Bourbaki ideals. It is a well-known fact that for torsionfree modules over Noetherian normal domains, Bourbaki sequences exist. We give criteria in terms of certain attached matrices for a homomorphism of modules to induce a Bourbaki sequence. Special attention is given to graded Bourbaki sequences. In the second part of the paper, we apply these results to the Koszul cycles of the residue class field and determine particular Bourbaki ideals explicitly. We also obtain in a special case the relationship between the structure of the Rees algebra of a Koszul cycle and the Rees algebra of its Bourbaki ideal.