Most small SUVs in the automotive market are equipped with torsion beam suspension for the rear wheels. Torsion beam suspension consists of a cross-member and a trailing arm. The cross-member plays a crucial role in preventing the vehicle from twisting; therefore, a shape that can withstand loads is essential. In this study, various shapes of cross-member reinforcements were added to the existing torsion beam suspension to analyze its structural strength when subjected to arbitrary forces. Analysis results were obtained for stiffness and driving stability factors such as smooth road shake, impact hardness, and memory shake. Based on these results, we identified the optimal cross-member shape with low torsional stiffness and a small side view swing arm angle by examining the changes in driving stability.