Abstract

The bushing of the trailing arm on torsion beam suspension plays a pivotal role in vehicle dynamic behavior. In this paper, the connection between bushing position and vehicle dynamic response is elucidated. According to the simulation results, the impact of the bushing position on the transient performance of vehicle is more pronounced at low handling frequencies, and different index under the same bushing position are not always optimal. To design the bushing position that is better for evaluation indexes, this paper formulates the design problem of the bushing position as a multi-objective optimization problem. Due to the influence of actual production and processing, inevitable errors in bushing position may result in vehicle performance not meeting design requirements. Therefore, this paper takes into consideration the uncertainties and conducts robust multi-objective optimization to design the bushing position. To address the computational burden associated with robust optimization, the RBF approximation model is developed in this paper. Finally, the optimization problem is solved with the NSGA-II intelligent algorithm. The optimization results show that the bushing position designed by robust multi-objective optimization results in vehicle with stronger anti-roll performance and better robustness for each evaluation index. It is more suitable for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.