BackgroundChaotic oscillations within the power system give rise to instability. While these oscillations may not have an immediate impact on the synchrony of the machine, they stimulate one of the oscillation modes, ultimately leading to voltage collapse and a loss of synchronism. ObjectiveThis paper introduces a modified Whale Optimization Algorithm (WOA)-based Battery-STATCOM (Static Synchronous Compensator) as a solution to mitigate chaotic oscillations within a Single Machine Infinite Bus (SMIB) system. MethodologyAn adaptable controller is implemented to manage the gate signal within the Battery-STATCOM. The AC-DC currents of this controller are optimally governed by two distinct WOA-tuned Proportional-Integral (PI) controllers. The battery storage unit serves as a robust voltage source, with the intelligent controller maintaining the DC-link voltage at the desired level. Test CasesAdditional disturbances, such as gradual variations in reference voltage and electromagnetic torque, are introduced to exacerbate chaotic oscillations. This is done to assess the controller's real-world performance under adverse conditions. Results and ConclusionUnder zero damping conditions, rotor parameters, including rise time, settling time, peak time, and overshoot, initially remain undefined due to uncontrolled oscillations. However, once the Battery-STATCOM is applied, these parameters are defined and achieve values (in seconds) of 0.90, 6.21, 1.71, and 21.10, respectively. After further optimization through the proposed modified WOA optimizer, the parameters reach values of 0.25, 1.01, 0.89, and 1.78, respectively. These results underscore the effectiveness of the proposed metaheuristic controller in suppressing overall chaotic oscillations within the power system.
Read full abstract